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a b s t r a c t

A simple technique is devised for obtaining finite strain estimates from deformed patterns of points
possessing anticlustered properties. As an alternative to the Fry approach where analysis is carried out in
the deformed state, the new method performs a large number of trial de-strainings of the point pattern.
For each de-strained dataset, a statistical analysis tests for the assumed properties of the point fabric in
the pre-deformational state, that the points come from an isotropic but non-Poisson distribution. This
computer-based procedure usually yields a number of acceptable solutions for the possible strain ellipse
in the given geological situation. The variability of the strain estimates for a given dataset provides an
assessment of the precision of the strain results.

Testing of the method with both synthetic and real datasets suggests that a best estimate for the strain
ellipse is one corresponding to the centre of gravity on the Elliott strain plot. The performance of the new
method compares favourably with existing Fry methods.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Geological strain analysis requires geometrical information
relating to the rock in its pre-deformational and deformed states.
The entities that yield this information are referred to as strain
markers. Some strain markers consist of individual objects with
specific shape e.g. fossils, ooids, and sedimentary clast outlines.
Other strain markers may consist of collections of objects with
particularorientationpatterns, e.g., preferredorientationpatternsof
muscovites in a sample of slate. However a problem arises where
neither typeof strainmarker is present in the rockbeinganalyzed. To
overcome this, Ramsay (1967) recognized a third type of strain
markerwhere the necessary geometrical information is provided by
mutual spatial arrangements of objects in the rock. This led to the
development of strain analysis techniques based on the distances of
separation of point objects in sedimentary, metamorphic and
igneous rocks (Ramsay,1967, p.195; Fry,1979; Hanna and Fry,1979).

The most popular of these inter-object distance techniques is the
all-object separation method devised by Fry (1979). This is a strain
method based on a polar plot of vectors depicting the separation of
the centres of all possible pairs of objects. Assuming that pairs of
adjacent objects were no closer than a certain threshold distance in
the pre-deformation state, the plotted vectors of the inter-object
distances in the deformed state will surround an elliptical region
devoid of data points, the so-called vacancy field. If the threshold
All rights reserved.
distance applies strictly, the elliptical region portrays directly the
shape of the finite strain ellipse. The Fry method has been used to
determine the finite strain in deformed clastic sedimentary rocks
(Treagus and Treagus, 2002), in gneisses (Lacassin and van der
Driessche, 1983), igneous rocks (Schwerdtner et al., 1983), etc.
where grain centres provide the required object data. In addition, the
method has been applied to deformed patterns of points not con-
sisting of the centres of grains. Examples of such non-granular data
used for Fry analysis are sand volcanoes (Waldron and Jensen, 1985).

For the majority of applications of the Fry method, the choice of
the ellipse that best describes the periphery of the vacancy field is
normallya source of ambiguity. This uncertaintyariseswherea strict
inter-point threshold distance does not exist because neighbouring
points show aweaker tendency for constant separation, i.e., a lesser
degree of anticlustering. This spatial variability arises from the
stochastic nature of the underlying processes that typically form the
point patterns studied, which has motivated several refinements of
the Fry method that attempt to compute the best-fit ellipse as an
alternative to visual selection (Waldron and Wallace, 2007).

After an estimate of the finite strain has been obtained by
selection of the best-fitting ellipse, a problem remains of assessing
the robustness of this estimate (Crespi, 1986). This is because
different pre-deformation point distributions show different
degrees of anticlustering. In cases of strong anticlustering (Fig. 1a),
the shape of the vacancy field should approximate closely to that of
the strain ellipse (Fig. 1b). However, in cases of very weak anti-
clustering, where the undeformed distribution of points
approaches that resulting from a random (Poisson) distribution
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Fig. 1. Anticlustering and Fry plots. A, Grains in deformed rock with strongly anti-
clustered centres; B, corresponding Fry plot with well defined ellipse; C, Weakly
anticlustered grain centres; D, corresponding Fry plot with poorly defined ellipse.
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(Fig. 1c), the vacancy field in the deformed point pattern will have
a size influenced by the number of points in the dataset and a shape
that is largely independent of the applied strain (Fig. 1d). Although
several methods have been suggested for determining the strain
ellipse from point data, with the exception of McNaught (2002) for
granular point data, none of these allows assessment of confidence
limits for the obtained result.

The aim of this paper is to propose a new and simple method of
strain analysis from point datasets of granular and non-granular
types. The proposed method addresses both problems of subjec-
tivity in obtaining a strain estimate, and the issue of qualifying the
robustness of that estimate.
Fig. 2. Vector diagram of inter-point distances (Fry diagram). See text for explanation.
2. The assumptions of the method

The Fry plot has in the past been used as a display for a variety of
types of spatial point patterns without necessarily a strain conno-
tation. Examples are spatial distributions of mineralization
(Vearncombe and Vearncombe, 1999) and of star clusters
(Cartwright and Whitworth, 2008). Even when the point data are
grain centres in a tectonite, the resulting elliptical Fry plot is not
guaranteed to have a direct relationship to the finite strain ellipse.
For this reason it seems advisable to generally refer to the Fry
pattern as a descriptor of a point fabric ellipse rather than as the
strain ellipse (Erslev, 1988). Only when the user is willing to make
certain fundamental assumptions about the nature of the starting
point patterns and of the imposed deformation, may the Fry plot be
used to deduce the strain ellipse.

In this context, the proposedmethod determines the strain as an
inverse problem; it uses the data from a deformed point distribu-
tion to constrain the principal parameters that had an influence on
the final configuration of the deformed points. To estimate the
magnitude and orientation of the finite strain ellipse, assumptions
are made regarding the character of the strain and of the initial
point distribution.

The assumptions concerning the strain are:

1) The strain is statistically homogeneous on scales ranging from
that of the inter-point distances upward to the size of the
overall area occupied by the sampled points. Smaller-scale
heterogeneities in strain, such as those arising from the
competence contrasts between grains and matrix, need not
invalidate the method.

2) The strain history is coaxial, i.e. infinitesimal strains during the
deformation are parallel to finite strains. This assumption is
a cautionary one and is made to avoid special situations where
strain may leave the original point configuration unaltered, e.g.
the ‘invisible’ simple shear deformation of regular lattice
patterns of points (Genier and Epard, 2007).

Concerning the initial point configuration, thepattern is assumed
to be isotropic in the sense that distances between pair of points,
whether immediate neighbours or not, do not vary systematically as
a function of the orientation of the tie line. An example of such
a population of point pairs is illustrated in a polar graph of the ends
of vectors representing the lengths and orientations of the tie-lines
drawn between all possible pairs of points in the sample (Fig. 2). Fry
(1979)used thisplot for thevisual estimationof the strainellipse. For
the method, the plot is divided into three concentric hoop-shaped
sampling cells. The assumption of isotropy means that a successful
de-straining of the point data produces a uniform distribution of
directions within each hoop-shaped sampling cell.
3. The method

Strain analysis using the proposed method involves a three-
stage process. Firstly, data consisting of the coordinates of points in
the deformed array are acquired and the inter-point vector (Fry)
diagram constructed (Fig. 3a). Secondly, this dataset is subjected to
a series of different geometrical transformations, each equivalent to
a different retrodeformation of the point array (Fig. 3b).

This stage effectively subjects the dataset to a series of trial
retrodeformations, each corresponding to the imposition of a strain
ellipse with a particular axial ratio and orientation. In the final
stage, the characteristics of each of the transformed datasets on the
Fry plot are compared to those assumed for the pre-deformation
configuration of the points (Fig. 3c, d). Where sufficient similarity
exists, the corresponding trial retrodeformation is used to derive an
acceptable solution of the finite strain parameters (Fig. 3d). The
three stages of the method are performed by a FORTRAN 95



Fig. 3. Strain analysis method. A, The data plotted on Fry diagram. B, Trial de-straining
applied. C, Isotropy and Poisson test applied to de-strained point pattern. D, An
acceptable de-straining, strain ellipse in black.
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program, PointStrain, which runs on a PC with Windows XP and is
available on request from the author.

3.1. Analysis

The data consist of coordinates defining point positions. These
positions are altered by each trial retrodeformation. A successful
de-straining is one that returns the set of points to positions that
accord with those assumed for the pre-deformation state. The
assumption of initial isotropy is first examined bymeans of Kuiper’s
Test (Mardia, 1972). This test examines the uniformity of the points
within each of the hoop sampling area (Fig. 3c, d) in terms of their
angular spacing. Details are given in Appendix 1.

However isotropy alone is not sufficiently diagnostic of the de-
strained state because random (Poisson) point distributions retain
their isotropic character even after deformation (Fry, 1979).
Therefore, a second statistical test detects the Poisson distribution
of points. For a Poisson distribution of points across the vector
diagram, the expected number of points falling within in a given
sampling region is directly proportional to the area of that region
(Fig. 2). In practice, the distribution of points is not uniform
throughout the cells and deviations from uniformity are assessed
by the Chi-squared Test, whose test statistic is given by

c2 ¼
Xi¼3

i¼1

�
O2
i =Ei

�
� N; (1)

where N is the total number of points in all three hoop cells, Oi, Ei is
the observed and expected number of points respectively in each of
the three hoop areas. Ei is proportional to the area of the ith hoop
area. The hypothesis that the dataset is a sample from a Poisson
distribution is rejected when chi-square exceeds 5.991, the 0.95
critical value for 2 degrees of freedom.

In summary, a successful retrodeformation is recognized as one
that returns an isotropic, but non-random, set of points. Typically
more than 25,000 trial retrodeformations involving different
combinations of strain ratio and orientation are applied (see
Appendix 2 for details). Experience gained from analysis of many
real and synthetic datasets shows that it is very rare for just one of
these retrodeformations to be successful. In other words, a range of
possible solutions to the strain analysis problem exists. In the
following section we consider this issue further with reference to
a number of examples.
4. Examples

4.1. Analysis of undeformed samples

Evaluation of the new method requires the analysis of samples
corresponding to known tectonic strains. In this regard, the unde-
formed sedimentary grain data published by Waldron and Wallace
(2007, their Fig. 9A) are useful. These data derive from a simulated
accumulation of sedimentary grains with a predefined sorting.
Samples with different degrees of anticlustering resulted from
varying the grain sorting. The sequence of Samples A1eA4
(Waldron and Wallace, 2007; Fig. 8) corresponds to one of
decreased grain sorting and hence decreasing anticlustering.

Using PointStrain to determine the strain in sample A1 (Fig. 4a),
a strongly anticlustered point dataset with a high density halo on the
Fry diagram (Fig. 4b), yielded a very restricted range of strain results
centredaround theknownstrain ratio,Rs¼ 1 (Fig. 4c,d).Of the26,000
de-strainings applied to the dataset, only 61 produced point distri-
butions compatible with the assumptions of isotropy. On the other
hand, the less anticlustered dataset A3 (Fig. 4e, f) produced much
broader strainestimates (Fig. 4g,h). Forexample, sampleA3produced
2208 strain solutions which, as well as including the condition of no
strain (Rs¼ 1), also include strain ratios as high as Rs¼ 1.45.

The experiment reveals that point patterns can be considered
a type of strain marker whose quality can vary greatly. In favourable
circumstances with pronounced anticlustering, they are geomet-
rically analogous to well defined circular markers that serve as
precise strain gauges. In other instances, they are akin to strain
markers that are not fully defined.
4.2. Analysis of artificially deformed samples

To evaluate the new strain analysis method, I subjectedWaldron
and Wallace’s (2007, Fig. 7a) four undeformed point datasets with
differing degrees of anticlustering (A1eA4) to simple shear trans-
formations of dextral sense, horizontal shear direction and with
two different shear strains (g¼ 0.5 and 1.0).

Sample A2 is relatively strongly anticlustered and yields a Fry
diagram with a rather well defined central vacancy (Fig. 5a). The
strains corresponding to those deformations that successfully
restore the point data to an isotropic, but non-Poisson, fabric are
represented as strain ellipses (Fig. 5b) and on a strain plot (Fig. 5c).
The strain plot, devised by Elliott (1970), displays strain ellipses in
polar coordinates (r, q) where r equals natural log of the axial ratio
of the ellipse and q is the doubled angle of inclination of the ellipse
long axis relative to some chosen reference line. Only 63 of the
33,000 trial de-strainings were successful, and they have a modal
distribution in the strain plot. Therefore, a set of strain markers
with this distribution would yield point populations that closely
constrains the tectonic strain ellipse. In contrast, the deformed
Sample A4 produces an ellipse on the Fry diagram with a fuzzy
periphery (Fig. 5d). When these data are analyzed, it is found that
2227 of 30,000 yield a solution and they create a wide range of
strains (Fig. 5e, f). In both simulations, the applied strain lies within
the area of the strain plot that contains the successful de-strainings
(Fig. 5c, f)

It is clear from this experiment that the proposed method
delivers a range of solutions to the strain analysis problem and that
the Elliott plot is useful representation of this range. Given the aim
of deriving a best estimate strain from PointStrain program, a mean
solution was calculated as the centre of gravity of the solution field
on the Elliott plot. When calculating the mean strain, care needs to
be taken to ensure that the trial de-strainings are arranged on
a uniform grid in solution space (see Appendix 2).



Fig. 4. Strain analysis of undeformed simulated samples. A, Sample of Waldron and Wallace (2007, Fig. 8a (i)); B, C, D, Fry plot, acceptable strain ellipses, Elliott plot of acceptable
strains respectively. E, Sample of Waldron and Wallace (2007, Fig. 8a (iii)); F, G, H, Fry plot, acceptable strain ellipses, Elliott plot of acceptable strains respectively.
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Themean solutions are generally close to the correct strain value
(Table 1). The orientation of the mean strain lies within 2� of the
correct value, and the error for the strain ratio varies from 1% to 12%
and appears to be larger in weakly anticlustered samples.

4.3. Comparison with the results of the methods of Waldron and
Wallace (2007)

Waldron and Wallace (2007) describe two alternative objective
methods for determining the point fabric ellipse: the continuous
Fig. 5. Strain analysis from synthetic samples deformed by dextral simple shear with a shear
Fry diagram, acceptable strain ellipses and Elliott plot of strain ellipses respectively for sam
respectively for sample 4. The actual simulated strain ellipse is shown by the cross in D.
function and the point-counting ellipsemethods. They are based on
the determination of the axial ratio of elliptical high density halo of
points that is characteristic of anticlustered point data plotted on
Fry diagrams. To assess the performance of their methods they
analyze datasets of known strain (Waldron and Wallace, 2007,
Table 2). For comparison with the present method, the same data
were analyzed by the program PointStrain (Table 2).

Each strain estimate obtained by Waldron and Wallace (2007)
and by the present study is compared to the corresponding
known strain ellipse by calculating a new index that measures the
strain of 1.0, corresponding to strain ellipse with R¼ 2.62 and q¼ 32� (Table 1). A, B, C,
ple 2; D, E, F, Fry diagram, acceptable strain ellipses and Elliott plot of strain ellipses



Table 1
Strain results obtained from synthetic grain-centre data (Waldron andWallace, 2007,
Fig. 8a) deformed by simple shear (g¼ 0.5, g¼ 1.0). Sorting and anticlustering
decreases progressively from Samples 1 to 4. Ns is the number of solutions obtained.
The average Rs and theta of these solutions are given.

g¼ 0.5 [Rs¼ 1.64, q¼ 38�] g¼ 1.0 [Rs¼ 2.62, q¼ 32�]

Mean (Rs, q) Misfit Ns Mean (Rs, q) Misfit Ns

Sample 1 1.63, 37� 1.019 56 2.60, 32� 1.008 63
Sample 2 1.67, 37� 1.026 67 2.67, 31� 1.045 68
Sample 3 1.73, 36� 1.068 291 2.74, 30� 1.096 303
Sample 4 1.84, 39� 1.124 2181 2.83, 33� 1.091 2227

Fig. 6. The results of strain analysis of samples taken from Ramsay and Huber (1983,
Fig. 7.7) for different sample sizes, N. A, B Fry plot and acceptable strain ellipses
respectively for sample with N¼ 100. C, D, Fry plot and acceptable strain ellipses from
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degree of incompatibility between two strain ellipses, termed here
the misfit strain factor. The misfit factor is the axial ratio of the
ellipse that results from the superimposition of one strain ellipse
with the reciprocal strain ellipse of the second ellipse. The super-
imposition of two very similar ellipses would produce a near
circular shape. Therefore, a misfit factor close to 1.0 indicates close
similarity of the two ellipses, whereas larger values indicate greater
difference. The procedure for calculating the misfit factor is out-
lined in Appendix 2. This misfit factor is calculated in Table 2 to
assess the relative quality of the strain estimates from the different
methods. The present method, the continuous function method
and the point-counting ellipse method delivered mean misfit
factors of 1.158, 1.377 and 1.251 respectively. Although based on
a limited number of samples, the proposed method here delivers
improved results as compared to these two techniques.
sample with N¼ 50.
4.4. Analysis of real data: oolitic limestone

Ooid grain centres were digitized from the photomicrograph of
oolitic limestone published by Ramsay and Huber (1983, Fig. 7.7) to
provide a series of samples of different sizes. Sample sizes varying
from 50 to 150 points were constructed from all grains lying within
a predefined area of the image. Perhaps not surprisingly, the range
of solutions for the strain decreases as the sample size increases
(Fig. 6). For sample sizes of 50, 75, and 100, the average number of
acceptable solutions is 448, 201, and 47, respectively. This is
consistent with the expectation that a greater precision of strain
determination can expected to be obtained by using larger sample
sizes. With regard to the minimum sample size required for the
method, the shape of the solution field on the Elliott plot is a useful
indication of the reliability of the result. For example, the solutions
for a sample size of 50 points (Fig. 6c) are so dispersed that any
average solution is unlikely to be robust (Fig. 6d). On the other
hand, we have more confidence in the compact pattern of results in
Fig. 6b obtained when the sample size is 100 grain centres (Fig. 6a).
Table 2
Comparison of results of present methodwith twomethods ofWaldron andWallace
(2007). Ns, number of acceptable solutions using 0.95 critical values for statistical
tests and a grid-spacing with successive de-strainings having a misfit strain factor of
1.02.

Sample N Known
strain: Rs, q

Present
method: Rs, q

Ns W & W
Method 1: Rs,
q

W & W
Method 2: Rs,
q

Fig 8b1 200 1.30, �48 1.23, �46 59 1.25, �54 1.32, �74
Fig 8b2 200 1.80, �57 1.75, �57 30 1.74, �58 2.04,�64
Fig 8b3 200 2.50, �13 2.48, �10 135 2.36, �13 2.12, �16
Fig 8c2 242 1.30, �48 1.52, �45 1976 1.39, �11 1.2, �61
Fig 8c3 239 1.80, �57 1.98, �53 1449 1.56, �38 1.63, �75
Fig 8c4 237 2.50, �13 2.45, �18 1364 3.84, �4 2.1,�10
Mean

misfit
factor

1.159 1.377 1.251
The analysis of the largest sample consisting of all discernable
grain centres (257 points) produced an unexpected result. At the
usual 95% significance level, no acceptable solutions were obtained,
i.e., no de-straining was found that could restore the present point
fabric to an isotropic one. This indicates that the basic requirements
of the method are not being met in this sample. At the 97.5% level,
only four solutions were found with an average strain ratio of 1.66
and strain direction of �25�, a result that is apparently compatible
with the Fry diagram (Fig. 7a) and visual fit of Ramsay and Huber
(1983, p. 120). By using this strain estimate to restore the point
fabric, a probable explanation is found for this curious result. The
restored Fry diagram (Fig. 7b) shows what appears to be a weak
hexagonal point instead of the ideal circular. If real, such a point
pattern may be expected from close packing of well-sorted grains,
i.e. extreme degrees of anticlustering. This lack of initial isotropy
would prevent a successful de-straining of the fabric to an isotropic
condition.
Fig. 7. Analysis of deformed oolitic limestone in Ramsay and Huber (1983, Fig. 7.7). 257
ooid centres. A, Fry diagram. B, restored Fry plot after removal of strain.



Fig. A2.1. The variables used in the calculation of the misfit strain factor, an index of
difference between two strain ellipses with axial ratios R1 and R2 respectively, and
difference of orientation q.
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5. Conclusions

Fry’s method for analyzing deformed point patterns has great
appeal given its simplicity, novel design and for the visual appre-
ciation it gives of the strain ellipse. However, in practice the visual
selection of the best-fit strain ellipse is frequently a source of
ambiguity.

This paper offers an alternative, objective computer-based
technique for obtaining the best-fit strain ellipse by repeatedly de-
straining the point data to identify those strain states that are
capable of restoring the data to assumed initial conditions, i.e. an
isotropic but non-Poisson point distribution. The usual result of this
process is to obtain a range of acceptable solutions to the strain
analysis problem, and the number of solutions serves to place
constraints on the strain ellipse’s strain ratio and orientation. The
plot of Elliott (1970) is useful for depicting the obtained range of
solutions. Testing of the method with synthetic data simulated
from pure and simple shear shows that the mean solutions produce
strain estimates which compare favourable with other Fry-related
methods.

In general, the strain ellipse is better constrained with data
derived from strongly anticlustered point distributions. Weakly
anticlustered point distributions that produce vague, poorly
defined vacancy fields on the Fry diagram lead to a broad range of
solutions with the new method.

The minimum sample size that can be dealt with the present
method is about 75 points. This lower limit is imposed by the
requirements of statistical tests used to detect isotropy of the
restored point fabrics. In general, larger samples place closer
constraints on the strain results.
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Appendix 1. The hoop diagram design and Kuiper’s test

The hoop diagram in Fig. 2 is used for statistical testing of de-
strained point patterns. It is used to sample the points of the point
fabric using the Kuiper’s and Chi-square tests. There are three
sampling cells; a central circle and two hoop cells. These cells
examine the distribution of points in the inner part of the Fry point
pattern; the part most sensitive to the strain. However, since the
size of the central region of the Fry diagram of low point population
depends on average point spacing and the degree of anticlustering,
the radii of the sampling hoops are not fixed a priori but are
determined on the basis of the pattern of the point set being
analyzed. To ensure that the sample contains sufficient points for
use of the Kuiper test of isotropy adjustment of the radii of the
hoops is made until the circle contains 40 points, and the two hoops
contain 80 and 120 points respectively.

Kuiper’s Test (Mardia, 1972, pp. 173e180; Cheeney, 1983, pp.
95e97) is an efficient method for assessing the distribution of
points within each cell of the hoop diagram. It tests the hypothesis
that the points are uniformly distributed around the cell in the
terms of the directions obtained by joining the points to the origin
of the polar diagram (Fig. 2). For a perfect uniform distribution, the
expected number of points encountered as we travel around the
hoop, expressed as a proportion of total number in the hoop, is
equal to the angle travelled as a proportion of the complete revo-
lution. For a real sample, the points encountered during an angle of
travel will differ from the prediction above, and the maximum
discrepancy attained during complete revolution is the test
statistic. If this maximum discrepancy is too large we can reject the
hypothesis of a uniform distribution (see Mardia, 1972, p. 178). This
test is well suited for the detection of strain effects, because strain
will tend to produce large positive and negative discrepancies 90�

apart.
Appendix 2. The misfit strain factor for two strain ellipses

Any comparison of a pair of strain ellipses needs to account for
their difference of aspect ratio, R, as well as their difference of
orientation. These two aspects need to be considered together
because the significance of a given difference in orientation
depends on the axial ratio of the ellipses involved. Here the misfit
strain factor is proposed for this purpose.

The misfit strain factor between two strain ellipses is defined as
the axial ratio of the strain ellipse that results from the superim-
position of the first strain ellipse with the second strain ellipse, the
second having been rotated through 90�. Two identical ellipses
would produce a circle, giving a misfit factor 1.0.

Fig. A2.1 defines the variables required for the calculation of the
misfit factor. A first and a second ellipse with axial ratios R1 and R2
respectively show an angular orientation difference of q. When the
second ellipse is rotated through 90�, the orientation difference
becomes q0 ¼ qþ 90�. Using equations of Elliott (1970, eq. 23) and
De Paor (1988, eq. A.14) we obtain the following equation for the
axial ratio of the strain ellipse resulting from the superimposition of
ellipse 1 and rotated ellipse 2:

Rmisfit ¼ 1
2

�
K þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � 4

p �
; (2)

where

K ¼ 2
�
C1C2 þ S1S2cos 2q

0�
; (3)

cos 2q0 ¼ 2sin2 q� 1; (4)

C ¼ 1
2
ðRþ 1=RÞ; (5)

and

S ¼ 1
2
ðR� 1=RÞ: (6)

This index of difference between strains is used in two different
ways in this study. Firstly, it is used to construct a uniform grid of the
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variables axial ratio and orientation for the systematic coverage of
parameter space during the series of de-strainings of the point data.
By arranging de-strainings with constant spacing in terms of Rmisfit,
the acceptable solutions can be averaged without bias. A uniform
polar grid is used in which grid nodes are arranged on radial lines
andconcentric circleson theElliottplot. Theellipses atneighbouring
grid nodes always differ by a constant Rmisfit value. Therefore,
a suitable value of Rmisfit is chosen a priori. Two ellipses corre-
sponding to gridnodes that are radial neighbourshaveaxial ratiosR1
and R2 but have parallel orientation, i.e. q¼ 0�. If R1 is known,
equations (2)e(6) are used to calculate the value of R2. Similarly, two
ellipses corresponding to grid nodes that are circumferential
neighbours have different orientations but have axial ratios R1¼ R2.
If R1 is known, equations (2)e(6) are used to calculate the value of q.

Secondly, Rmisfit is used to compare the results of strain analysis
with known strains or with results produced by the use of other
methods.
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